
ACADEMIC PROFILES
SOCIAL
REPOSITORIES
CONTACTS
+39 049 827 7964
BIOGRAPHY
Alexander Monzon is an associate professor (RTDA researcher) in the Department of Information Engineering at the University of Padova, Italy.
He currently conducts research on non-globular proteins, specifically disordered and repetitive proteins. Alexander has made significant contributions to the field of Bioinformatics and has co-authored several important databases, including DisProt, RepeatsDB, MobiDB, PED, and FuzDB. These databases represent the current state-of-the-art knowledge in the structural biology of non-globular proteins. He actively participates in various networks, scientific societies, and international consortia, such as the ISCB student council, A2B2C, COST-action “NGP-net,” MSCA RISE “IDPfun” and “REFRACT”, and the H2020 Twinning project “PhasAGE” Additionally, he was the main proposer of the COST action “ML4NGP.”
ACADEMIC POSITION
Assistant professor – tenure track
(since 12/2024)
ACADEMIC CAREER & DEGREES
- 2018 – PhD in Basic and Applied Sciences
National University of Quilmes – Argentina - 2012 – MSc in Bioinformatic
National University of Entre Ríos – Argentina
LANGUAGES
English
Italian
Spanish
(Upper Advanced)
(Upper Advanced)
(Native)
2025
Journal Articles
Damiano Clementel; Alessio Del Conte; Alexander Miguel Monzon; Silvio C. E. Tosatto
ngx-mol-viewers: Angular components for interactive molecular visualization in bioinformatics Journal Article
In: Frontiers in Bioinformatics, vol. 5, 2025, (Cited by: 0; Open Access).
@article{SCOPUS_ID:105011353218,
title = {ngx-mol-viewers: Angular components for interactive molecular visualization in bioinformatics},
author = {Damiano Clementel and Alessio Del Conte and Alexander Miguel Monzon and Silvio C. E. Tosatto},
url = {https://www.scopus.com/record/display.uri?eid=2-s2.0-105011353218&origin=inward},
doi = {10.3389/fbinf.2025.1586744},
year = {2025},
date = {2025-01-01},
journal = {Frontiers in Bioinformatics},
volume = {5},
publisher = {Frontiers Media SA},
abstract = {Copyright © 2025 Clementel, Del Conte, Monzon and Tosatto.Advancements in bioinformatics have been propelled by technologies like machine learning and have resulted in substantial increases in data generated from both empirical observations and computational models. Hence, well-known biological databases are growing in size and centrality by integrating data from different sources. While the primary goal of these databases is to collect and distribute data through application programming interfaces (APIs), providing visualization and analysis tools directly on the browser interface is crucial for users to understand the data, which increases the usefulness and overall impact of the databases. Currently, some front-end frameworks are available for the sustained development of the user interface (UI) and user experience (UX) of these resources. Angular is one of the most popular frameworks to be broadly adopted within the BioCompUP laboratory. This work describes a library of reusable and customizable components that can be easily integrated into the Angular framework to provide visualizations of various aspects of protein molecules, such as their sequences, structures, and annotations. Currently, the library includes three main independent components. The first is the ngx-structure-viewer, which allows visualization of molecules through the MolStar three-dimensional viewer. The second is the ngx-sequence-viewer, which provides visualization and annotation capabilities for a single sequence or multiple sequence alignments. The third the ngx-features-viewer, enables the mapping and visualization of various biological annotations onto the same molecule. All these tools are available for download through the Node Package Manager (NPM), and more information is available at https://biocomputingup.github.io/ngx-mol-viewers/ (under development).},
note = {Cited by: 0; Open Access},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Alessio Del Conte; Hamidreza Ghafouri; Damiano Clementel; Ivan Mičetić; Damiano Piovesan; Silvio C. E Tosatto; Alexander Miguel Monzon
DRMAAtic: Dramatically improve your cluster potential Journal Article
In: Bioinformatics Advances, vol. 5, no. 1, 2025, (Cited by: 0; Open Access).
@article{SCOPUS_ID:105008238034,
title = {DRMAAtic: Dramatically improve your cluster potential},
author = {Alessio Del Conte and Hamidreza Ghafouri and Damiano Clementel and Ivan Mičetić and Damiano Piovesan and Silvio C. E Tosatto and Alexander Miguel Monzon},
url = {https://www.scopus.com/record/display.uri?eid=2-s2.0-105008238034&origin=inward},
doi = {10.1093/bioadv/vbaf112},
year = {2025},
date = {2025-01-01},
journal = {Bioinformatics Advances},
volume = {5},
number = {1},
publisher = {Oxford University Press},
abstract = {© 2025 The Author(s).Motivation The accessibility and usability of high-performance computing (HPC) resources remain significant challenges in bioinformatics, particularly for researchers lacking extensive technical expertise. While Distributed Resource Managers (DRMs) optimize resource utilization, the complexities of interfacing with these systems often hinder broader adoption. DRMAAtic addresses these challenges by integrating the Distributed Resource Management Application API (DRMAA) with a user-friendly RESTful interface, simplifying job management across diverse HPC environments. This framework empowers researchers to submit, monitor, and retrieve computational jobs securely and efficiently, without requiring deep knowledge of underlying cluster configurations. Results We present DRMAAtic, a flexible and scalable tool that bridges the gap between web interfaces and HPC infrastructures. Built on the Django REST Framework, DRMAAtic supports seamless job submission and management via HTTP calls. Its modular architecture enables integration with any DRM supporting DRMAA APIs and offers robust features such as role-based access control, throttling mechanisms, and dependency management. Successful applications of DRMAAtic include the RING web server for protein structure analysis, the CAID Prediction Portal for disorder and binding predictions, and the Protein Ensemble Database deposition server. These deployments demonstrate DRMAAtic's potential to enhance computational workflows, improve resource efficiency, and facilitate open science in life sciences.},
note = {Cited by: 0; Open Access},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Damiano Clementel; Paula Nazarena Arrías; Soroush Mozaffari; Zarifa Osmanli; Ximena Aixa Castro; RepeatsDB Curators; Carlo Ferrari; Andrey V. Kajava; Silvio C. E. Tosatto; Alexander Miguel Monzon
RepeatsDB in 2025: expanding annotations of structured tandem repeats proteins on AlphaFoldDB Journal Article
In: Nucleic Acids Research, vol. 53, no. D1, pp. D575-D581, 2025, (Cited by: 6; Open Access).
@article{SCOPUS_ID:85211995276,
title = {RepeatsDB in 2025: expanding annotations of structured tandem repeats proteins on AlphaFoldDB},
author = {Damiano Clementel and Paula Nazarena Arrías and Soroush Mozaffari and Zarifa Osmanli and Ximena Aixa Castro and RepeatsDB Curators and Carlo Ferrari and Andrey V. Kajava and Silvio C. E. Tosatto and Alexander Miguel Monzon},
url = {https://www.scopus.com/record/display.uri?eid=2-s2.0-85211995276&origin=inward},
doi = {10.1093/nar/gkae965},
year = {2025},
date = {2025-01-01},
journal = {Nucleic Acids Research},
volume = {53},
number = {D1},
pages = {D575-D581},
publisher = {Oxford University Press},
abstract = {© The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.RepeatsDB (URL: https://repeatsdb.org) stands as a key resource for the classification and annotation of Structured Tandem Repeat Proteins (STRPs), incorporating data from both the Protein Data Bank (PDB) and AlphaFoldDB. This latest release features substantial advancements, including annotations for over 34 000 unique protein sequences from >2000 organisms, representing a fifteenfold increase in coverage. Leveraging state-of-the-art structural alignment tools, RepeatsDB now offers faster and more precise detection of STRPs across both experimental and predicted structures. Key improvements also include a redesigned user interface and enhanced web server, providing an intuitive browsing experience with improved data searchability and accessibility. A new statistics page allows users to explore database metrics based on repeat classifications, while API enhancements support scalability to manage the growing volume of data. These advancements not only refine the understanding of STRPs but also streamline annotation processes, further strengthening RepeatsDB’s role in advancing our understanding of STRP functions.},
note = {Cited by: 6; Open Access},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2024
Journal Articles
Hamidreza Ghafouri; Tamas Lazar; Alessio Del Conte; Luiggi G. Tenorio Ku; Peter Tompa; Silvio C. E. Tosatto; Alexander Miguel Monzon; Maria C. Aspromonte; Pau Bernadó; Belén Chaves-Arquero; Lucia Beatriz Chemes; Damiano Clementel; Tiago N. Cordeiro; Carlos A. Elena-Real; Michael Feig; Isabella C. Felli; Carlo Ferrari; Julie D. Forman-Kay; Tiago Gomes; Frank Gondelaud; Claudiu C. Gradinaru; Tâp Ha-Duong; Teresa Head-Gordon; Pétur O. Heidarsson; Giacomo Janson; Gunnar Jeschke; Emanuela Leonardi; Zi Hao Liu; Sonia Longhi; Xamuel L. Lund; Maria J. Macias; Pau Martin-Malpartida; Davide Mercadante; Assia Mouhand; Gabor Nagy; María Victoria Nugnes; José Manuel Pérez-Cañadillas; Giulia Pesce; Roberta Pierattelli; Damiano Piovesan; Federica Quaglia; Sylvie Ricard-Blum; Paul Robustelli; Amin Sagar; Edoardo Salladini; Lucile Sénicourt; Nathalie Sibille; João M. C. Teixeira; Thomas E. Tsangaris; Mihaly Varadi
PED in 2024: improving the community deposition of structural ensembles for intrinsically disordered proteins Journal Article
In: Nucleic Acids Research, vol. 52, no. D1, pp. D536-D544, 2024, (Cited by: 31; Open Access).
@article{SCOPUS_ID:85181761325,
title = {PED in 2024: improving the community deposition of structural ensembles for intrinsically disordered proteins},
author = {Hamidreza Ghafouri and Tamas Lazar and Alessio Del Conte and Luiggi G. Tenorio Ku and Peter Tompa and Silvio C. E. Tosatto and Alexander Miguel Monzon and Maria C. Aspromonte and Pau Bernadó and Belén Chaves-Arquero and Lucia Beatriz Chemes and Damiano Clementel and Tiago N. Cordeiro and Carlos A. Elena-Real and Michael Feig and Isabella C. Felli and Carlo Ferrari and Julie D. Forman-Kay and Tiago Gomes and Frank Gondelaud and Claudiu C. Gradinaru and Tâp Ha-Duong and Teresa Head-Gordon and Pétur O. Heidarsson and Giacomo Janson and Gunnar Jeschke and Emanuela Leonardi and Zi Hao Liu and Sonia Longhi and Xamuel L. Lund and Maria J. Macias and Pau Martin-Malpartida and Davide Mercadante and Assia Mouhand and Gabor Nagy and María Victoria Nugnes and José Manuel Pérez-Cañadillas and Giulia Pesce and Roberta Pierattelli and Damiano Piovesan and Federica Quaglia and Sylvie Ricard-Blum and Paul Robustelli and Amin Sagar and Edoardo Salladini and Lucile Sénicourt and Nathalie Sibille and João M. C. Teixeira and Thomas E. Tsangaris and Mihaly Varadi},
url = {https://www.scopus.com/record/display.uri?eid=2-s2.0-85181761325&origin=inward},
doi = {10.1093/nar/gkad947},
year = {2024},
date = {2024-01-01},
journal = {Nucleic Acids Research},
volume = {52},
number = {D1},
pages = {D536-D544},
publisher = {Oxford University Press},
abstract = {© The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.The Protein Ensemble Database (PED) (URL: https://proteinensemble.org) is the primary resource for depositing structural ensembles of intrinsically disordered proteins. This updated version of PED reflects advancements in the field, denoting a continual expansion with a total of 461 entries and 538 ensembles, including those generated without explicit experimental data through novel machine learning (ML) techniques. With this significant increment in the number of ensembles, a few yet-unprecedented new entries entered the database, including those also determined or refined by electron paramagnetic resonance or circular dichroism data. In addition, PED was enriched with several new features, including a novel deposition service, improved user interface, new database cross-referencing options and integration with the 3D-Beacons network—all representing efforts to improve the FAIRness of the database. Foreseeably, PED will keep growing in size and expanding with new types of ensembles generated by accurate and fast ML-based generative models and coarse-grained simulations. Therefore, among future efforts, priority will be given to further develop the database to be compatible with ensembles modeled at a coarse-grained level.},
note = {Cited by: 31; Open Access},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Omar Abdelghani Attafi; Damiano Clementel; Konstantinos Kyritsis; Emidio Capriotti; Gavin Farrell; Styliani-Christina Fragkouli; Leyla Jael Castro; András Hatos; Tom Lenaerts; Stanislav Mazurenko; Soroush Mozaffari; Franco Pradelli; Patrick Ruch; Castrense Savojardo; Paola Turina; Federico Zambelli; Damiano Piovesan; Alexander Miguel Monzon; Fotis Psomopoulos; Silvio C. E. Tosatto
DOME Registry: implementing community-wide recommendations for reporting supervised machine learning in biology Journal Article
In: GigaScience, vol. 13, 2024, (Cited by: 1; Open Access).
@article{SCOPUS_ID:85212459848,
title = {DOME Registry: implementing community-wide recommendations for reporting supervised machine learning in biology},
author = {Omar Abdelghani Attafi and Damiano Clementel and Konstantinos Kyritsis and Emidio Capriotti and Gavin Farrell and Styliani-Christina Fragkouli and Leyla Jael Castro and András Hatos and Tom Lenaerts and Stanislav Mazurenko and Soroush Mozaffari and Franco Pradelli and Patrick Ruch and Castrense Savojardo and Paola Turina and Federico Zambelli and Damiano Piovesan and Alexander Miguel Monzon and Fotis Psomopoulos and Silvio C. E. Tosatto},
url = {https://www.scopus.com/record/display.uri?eid=2-s2.0-85212459848&origin=inward},
doi = {10.1093/gigascience/giae094},
year = {2024},
date = {2024-01-01},
journal = {GigaScience},
volume = {13},
publisher = {Oxford University Press},
abstract = {© The Author(s) 2024. Published by Oxford University Press GigaScience.Supervised machine learning (ML) is used extensively in biology and deserves closer scrutiny. The Data Optimization Model Evaluation (DOME) recommendations aim to enhance the validation and reproducibility of ML research by establishing standards for key aspects such as data handling and processing, optimization, evaluation, and model interpretability. The recommendations help to ensure that key details are reported transparently by providing a structured set of questions. Here, we introduce the DOME registry (URL: registry.dome-ml.org), a database that allows scientists to manage and access comprehensive DOME-related information on published ML studies. The registry uses external resources like ORCID, APICURON, and the Data Stewardship Wizard to streamline the annotation process and ensure comprehensive documentation. By assigning unique identifiers and DOME scores to publications, the registry fosters a standardized evaluation of ML methods. Future plans include continuing to grow the registry through community curation, improving the DOME score definition and encouraging publishers to adopt DOME standards, and promoting transparency and reproducibility of ML in the life sciences.},
note = {Cited by: 1; Open Access},
keywords = {},
pubstate = {published},
tppubtype = {article}
}