
ACADEMIC PROFILES
SOCIAL
REPOSITORIES
CONTACTS
+39 049 827 7964
BIOGRAPHY
Alexander Monzon is an associate professor (RTDA researcher) in the Department of Information Engineering at the University of Padova, Italy.
He currently conducts research on non-globular proteins, specifically disordered and repetitive proteins. Alexander has made significant contributions to the field of Bioinformatics and has co-authored several important databases, including DisProt, RepeatsDB, MobiDB, PED, and FuzDB. These databases represent the current state-of-the-art knowledge in the structural biology of non-globular proteins. He actively participates in various networks, scientific societies, and international consortia, such as the ISCB student council, A2B2C, COST-action “NGP-net,” MSCA RISE “IDPfun” and “REFRACT”, and the H2020 Twinning project “PhasAGE” Additionally, he was the main proposer of the COST action “ML4NGP.”
ACADEMIC POSITION
Assistant professor – tenure track
(since 12/2024)
ACADEMIC CAREER & DEGREES
- 2018 – PhD in Basic and Applied Sciences
National University of Quilmes – Argentina - 2012 – MSc in Bioinformatic
National University of Entre Ríos – Argentina
LANGUAGES
English
Italian
Spanish
(Upper Advanced)
(Upper Advanced)
(Native)
2025
Journal Articles
Alessio Del Conte; Hamidreza Ghafouri; Damiano Clementel; Ivan Mičetić; Damiano Piovesan; Silvio C. E Tosatto; Alexander Miguel Monzon
DRMAAtic: Dramatically improve your cluster potential Journal Article
In: Bioinformatics Advances, vol. 5, no. 1, 2025, (Cited by: 0; Open Access).
@article{SCOPUS_ID:105008238034,
title = {DRMAAtic: Dramatically improve your cluster potential},
author = {Alessio Del Conte and Hamidreza Ghafouri and Damiano Clementel and Ivan Mičetić and Damiano Piovesan and Silvio C. E Tosatto and Alexander Miguel Monzon},
url = {https://www.scopus.com/record/display.uri?eid=2-s2.0-105008238034&origin=inward},
doi = {10.1093/bioadv/vbaf112},
year = {2025},
date = {2025-01-01},
journal = {Bioinformatics Advances},
volume = {5},
number = {1},
publisher = {Oxford University Press},
abstract = {© 2025 The Author(s).Motivation The accessibility and usability of high-performance computing (HPC) resources remain significant challenges in bioinformatics, particularly for researchers lacking extensive technical expertise. While Distributed Resource Managers (DRMs) optimize resource utilization, the complexities of interfacing with these systems often hinder broader adoption. DRMAAtic addresses these challenges by integrating the Distributed Resource Management Application API (DRMAA) with a user-friendly RESTful interface, simplifying job management across diverse HPC environments. This framework empowers researchers to submit, monitor, and retrieve computational jobs securely and efficiently, without requiring deep knowledge of underlying cluster configurations. Results We present DRMAAtic, a flexible and scalable tool that bridges the gap between web interfaces and HPC infrastructures. Built on the Django REST Framework, DRMAAtic supports seamless job submission and management via HTTP calls. Its modular architecture enables integration with any DRM supporting DRMAA APIs and offers robust features such as role-based access control, throttling mechanisms, and dependency management. Successful applications of DRMAAtic include the RING web server for protein structure analysis, the CAID Prediction Portal for disorder and binding predictions, and the Protein Ensemble Database deposition server. These deployments demonstrate DRMAAtic's potential to enhance computational workflows, improve resource efficiency, and facilitate open science in life sciences.},
note = {Cited by: 0; Open Access},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Damiano Clementel; Paula Nazarena Arrías; Soroush Mozaffari; Zarifa Osmanli; Ximena Aixa Castro; RepeatsDB Curators; Carlo Ferrari; Andrey V. Kajava; Silvio C. E. Tosatto; Alexander Miguel Monzon
RepeatsDB in 2025: expanding annotations of structured tandem repeats proteins on AlphaFoldDB Journal Article
In: Nucleic Acids Research, vol. 53, no. D1, pp. D575-D581, 2025, (Cited by: 5; Open Access).
@article{SCOPUS_ID:85211995276,
title = {RepeatsDB in 2025: expanding annotations of structured tandem repeats proteins on AlphaFoldDB},
author = {Damiano Clementel and Paula Nazarena Arrías and Soroush Mozaffari and Zarifa Osmanli and Ximena Aixa Castro and RepeatsDB Curators and Carlo Ferrari and Andrey V. Kajava and Silvio C. E. Tosatto and Alexander Miguel Monzon},
url = {https://www.scopus.com/record/display.uri?eid=2-s2.0-85211995276&origin=inward},
doi = {10.1093/nar/gkae965},
year = {2025},
date = {2025-01-01},
journal = {Nucleic Acids Research},
volume = {53},
number = {D1},
pages = {D575-D581},
publisher = {Oxford University Press},
abstract = {© The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.RepeatsDB (URL: https://repeatsdb.org) stands as a key resource for the classification and annotation of Structured Tandem Repeat Proteins (STRPs), incorporating data from both the Protein Data Bank (PDB) and AlphaFoldDB. This latest release features substantial advancements, including annotations for over 34 000 unique protein sequences from >2000 organisms, representing a fifteenfold increase in coverage. Leveraging state-of-the-art structural alignment tools, RepeatsDB now offers faster and more precise detection of STRPs across both experimental and predicted structures. Key improvements also include a redesigned user interface and enhanced web server, providing an intuitive browsing experience with improved data searchability and accessibility. A new statistics page allows users to explore database metrics based on repeat classifications, while API enhancements support scalability to manage the growing volume of data. These advancements not only refine the understanding of STRPs but also streamline annotation processes, further strengthening RepeatsDB’s role in advancing our understanding of STRP functions.},
note = {Cited by: 5; Open Access},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2024
Journal Articles
Paula Nazarena Arrías; Zarifa Osmanli; Estefanía Peralta; Patricio Manuel Chinestrad; Alexander Miguel Monzon; Silvio C. E. Tosatto
Diversity and structural-functional insights of alpha-solenoid proteins Journal Article
In: Protein Science, vol. 33, no. 11, 2024, (Cited by: 0; Open Access).
@article{SCOPUS_ID:85207813713,
title = {Diversity and structural-functional insights of alpha-solenoid proteins},
author = {Paula Nazarena Arrías and Zarifa Osmanli and Estefanía Peralta and Patricio Manuel Chinestrad and Alexander Miguel Monzon and Silvio C. E. Tosatto},
url = {https://www.scopus.com/record/display.uri?eid=2-s2.0-85207813713&origin=inward},
doi = {10.1002/pro.5189},
year = {2024},
date = {2024-01-01},
journal = {Protein Science},
volume = {33},
number = {11},
publisher = {John Wiley and Sons Inc},
abstract = {© 2024 The Author(s). Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society.Alpha-solenoids are a significant and diverse subset of structured tandem repeat proteins (STRPs) that are important in various domains of life. This review examines their structural and functional diversity and highlights their role in critical cellular processes such as signaling, apoptosis, and transcriptional regulation. Alpha-solenoids can be classified into three geometric folds: low curvature, high curvature, and corkscrew, as well as eight subfolds: ankyrin repeats; Huntingtin, elongation factor 3, protein phosphatase 2A, and target of rapamycin; armadillo repeats; tetratricopeptide repeats; pentatricopeptide repeats; Pumilio repeats; transcription activator-like; and Sel-1 and Sel-1-like repeats. These subfolds represent distinct protein families with unique structural properties and functions, highlighting the versatility of alpha-solenoids. The review also discusses their association with disease, highlighting their potential as therapeutic targets and their role in protein design. Advances in state-of-the-art structure prediction methods provide new opportunities and challenges in the functional characterization and classification of this kind of fold, emphasizing the need for continued development of methods for their identification and proper data curation and deposition in the main databases.},
note = {Cited by: 0; Open Access},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Soroush Mozaffari; Paula Nazarena Arrías; Damiano Clementel; Damiano Piovesan; Carlo Ferrari; Silvio C. E. Tosatto; Alexander Miguel Monzon
STRPsearch: fast detection of structured tandem repeat proteins Journal Article
In: Bioinformatics, vol. 40, no. 12, 2024, (Cited by: 0; Open Access).
@article{SCOPUS_ID:85211966531,
title = {STRPsearch: fast detection of structured tandem repeat proteins},
author = {Soroush Mozaffari and Paula Nazarena Arrías and Damiano Clementel and Damiano Piovesan and Carlo Ferrari and Silvio C. E. Tosatto and Alexander Miguel Monzon},
url = {https://www.scopus.com/record/display.uri?eid=2-s2.0-85211966531&origin=inward},
doi = {10.1093/bioinformatics/btae690},
year = {2024},
date = {2024-01-01},
journal = {Bioinformatics},
volume = {40},
number = {12},
publisher = {Oxford University Press},
abstract = {© The Author(s) 2024.Motivation: Structured Tandem Repeats Proteins (STRPs) constitute a subclass of tandem repeats characterized by repetitive structural motifs. These proteins exhibit distinct secondary structures that form repetitive tertiary arrangements, often resulting in large molecular assemblies. Despite highly variable sequences, STRPs can perform important and diverse biological functions, maintaining a consistent structure with a variable number of repeat units. With the advent of protein structure prediction methods, millions of 3D models of proteins are now publicly available. However, automatic detection of STRPs remains challenging with current state-of-the-art tools due to their lack of accuracy and long execution times, hindering their application on large datasets. In most cases, manual curation remains the most accurate method for detecting and classifying STRPs, making it impracticable to annotate millions of structures. Results: We introduce STRPsearch, a novel tool for the rapid identification, classification, and mapping of STRPs. Leveraging manually curated entries from RepeatsDB as the known conformational space of STRPs, STRPsearch uses the latest advances in structural alignment for a fast and accurate detection of repeated structural motifs in proteins, followed by an innovative approach to map units and insertions through the generation of TM-score profiles. STRPsearch is highly scalable, efficiently processing large datasets, and can be applied to both experimental structures and predicted models. In addition, it demonstrates superior performance compared to existing tools, offering researchers a reliable and comprehensive solution for STRP analysis across diverse proteomes.},
note = {Cited by: 0; Open Access},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Juan Mac Donagh; Abril Marchesini; Agostina Spiga; Maximiliano José Fallico; Paula Nazarena Arrías; Alexander Miguel Monzon; Aimilia-Christina Vagiona; Mariane Gonçalves-Kulik; Pablo Mier; Miguel A. Andrade-Navarro
Structured Tandem Repeats in Protein Interactions Journal Article
In: International Journal of Molecular Sciences, vol. 25, no. 5, 2024, (Cited by: 2; Open Access).
@article{SCOPUS_ID:85187783312,
title = {Structured Tandem Repeats in Protein Interactions},
author = {Juan Mac Donagh and Abril Marchesini and Agostina Spiga and Maximiliano José Fallico and Paula Nazarena Arrías and Alexander Miguel Monzon and Aimilia-Christina Vagiona and Mariane Gonçalves-Kulik and Pablo Mier and Miguel A. Andrade-Navarro},
url = {https://www.scopus.com/record/display.uri?eid=2-s2.0-85187783312&origin=inward},
doi = {10.3390/ijms25052994},
year = {2024},
date = {2024-01-01},
journal = {International Journal of Molecular Sciences},
volume = {25},
number = {5},
publisher = {Multidisciplinary Digital Publishing Institute (MDPI)},
abstract = {© 2024 by the authors.Tandem repeats (TRs) in protein sequences are consecutive, highly similar sequence motifs. Some types of TRs fold into structural units that pack together in ensembles, forming either an (open) elongated domain or a (closed) propeller, where the last unit of the ensemble packs against the first one. Here, we examine TR proteins (TRPs) to see how their sequence, structure, and evolutionary properties favor them for a function as mediators of protein interactions. Our observations suggest that TRPs bind other proteins using large, structured surfaces like globular domains; in particular, open-structured TR ensembles are favored by flexible termini and the possibility to tightly coil against their targets. While, intuitively, open ensembles of TRs seem prone to evolve due to their potential to accommodate insertions and deletions of units, these evolutionary events are unexpectedly rare, suggesting that they are advantageous for the emergence of the ancestral sequence but are early fixed. We hypothesize that their flexibility makes it easier for further proteins to adapt to interact with them, which would explain their large number of protein interactions. We provide insight into the properties of open TR ensembles, which make them scaffolds for alternative protein complexes to organize genes, RNA and proteins.},
note = {Cited by: 2; Open Access},
keywords = {},
pubstate = {published},
tppubtype = {article}
}