
ACADEMIC PROFILES
SOCIAL
REPOSITORIES
CONTACTS
+39 049 827 6260
+39 049 827 6269
BIOGRAPHY
Emanuela Leonardi is currently Assistant Professor (RTDb; tenure track) in Biochemistry (SSD BIO/10) at the Department of Biomedical Sciences of the University of Padua (Italy).
ACADEMIC POSITION
Assistant professor – tenure track
(since 10/2022)
ACADEMIC CAREER & DEGREES
- 2012 – PhD in Bioscience and Biotechnology (Curriculum Biochemistry and Biophysics)
University of Padova – Italy - 2008 – MSc (Laura Magistrale) in Molecular Biology
University of Padova – Italy - 2005 – BSc (Laura Triennale) in Molecular Biology
University of Padova – Italy - 1998 – Degree (Diploma di Laurea) in Biomedical Laboratory Technician
University of Padova – Italy
LANGUAGES
English
Italian
(Upper Advanced)
(Native)
2025
Journal Articles
Elisa Granocchio; Luca Andreoli; Santina Magazù; Daniela Sarti; Emanuela Leonardi; Alessandra Murgia; Claudia Ciaccio
Expanding the clinical phenotype of SHANK2-related disorders: childhood apraxia of speech in a patient with a novel SHANK2 pathogenic variant Journal Article
In: European Child and Adolescent Psychiatry, vol. 34, no. 2, pp. 815-817, 2025, (Cited by: 1).
@article{SCOPUS_ID:85191992890,
title = {Expanding the clinical phenotype of SHANK2-related disorders: childhood apraxia of speech in a patient with a novel SHANK2 pathogenic variant},
author = {Elisa Granocchio and Luca Andreoli and Santina Magazù and Daniela Sarti and Emanuela Leonardi and Alessandra Murgia and Claudia Ciaccio},
url = {https://www.scopus.com/record/display.uri?eid=2-s2.0-85191992890&origin=inward},
doi = {10.1007/s00787-024-02452-4},
year = {2025},
date = {2025-01-01},
journal = {European Child and Adolescent Psychiatry},
volume = {34},
number = {2},
pages = {815-817},
publisher = {Springer Science and Business Media Deutschland GmbH},
note = {Cited by: 1},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Maria Cristina Aspromonte; Alessio Del Conte; Shaowen Zhu; Wuwei Tan; Yang Shen; Yexian Zhang; Qi Li; Maggie Haitian Wang; Giulia Babbi; Samuele Bovo; Pier Luigi Martelli; Rita Casadio; Azza Althagafi; Sumyyah Toonsi; Maxat Kulmanov; Robert Hoehndorf; Panagiotis Katsonis; Amanda Williams; Olivier Lichtarge; Su Xian; Wesley Surento; Vikas Pejaver; Sean D. Mooney; Uma Sunderam; Rajgopal Srinivasan; Alessandra Murgia; Damiano Piovesan; Silvio C. E. Tosatto; Emanuela Leonardi
CAGI6 ID panel challenge: assessment of phenotype and variant predictions in 415 children with neurodevelopmental disorders (NDDs) Journal Article
In: Human Genetics, 2025, (Cited by: 1; Open Access).
@article{SCOPUS_ID:85217180047,
title = {CAGI6 ID panel challenge: assessment of phenotype and variant predictions in 415 children with neurodevelopmental disorders (NDDs)},
author = {Maria Cristina Aspromonte and Alessio Del Conte and Shaowen Zhu and Wuwei Tan and Yang Shen and Yexian Zhang and Qi Li and Maggie Haitian Wang and Giulia Babbi and Samuele Bovo and Pier Luigi Martelli and Rita Casadio and Azza Althagafi and Sumyyah Toonsi and Maxat Kulmanov and Robert Hoehndorf and Panagiotis Katsonis and Amanda Williams and Olivier Lichtarge and Su Xian and Wesley Surento and Vikas Pejaver and Sean D. Mooney and Uma Sunderam and Rajgopal Srinivasan and Alessandra Murgia and Damiano Piovesan and Silvio C. E. Tosatto and Emanuela Leonardi},
url = {https://www.scopus.com/record/display.uri?eid=2-s2.0-85217180047&origin=inward},
doi = {10.1007/s00439-024-02722-w},
year = {2025},
date = {2025-01-01},
journal = {Human Genetics},
publisher = {Springer Science and Business Media Deutschland GmbH},
abstract = {© The Author(s) 2025.The Genetics of Neurodevelopmental Disorders Lab in Padua provided a new intellectual disability (ID) Panel challenge for computational methods to predict patient phenotypes and their causal variants in the context of the Critical Assessment of the Genome Interpretation, 6th edition (CAGI6). Eight research teams submitted a total of 30 models to predict phenotypes based on the sequences of 74 genes (VCF format) in 415 pediatric patients affected by Neurodevelopmental Disorders (NDDs). NDDs are clinically and genetically heterogeneous conditions, with onset in infant age. Here, we assess the ability and accuracy of computational methods to predict comorbid phenotypes based on clinical features described in each patient and their causal variants. We also evaluated predictions for possible genetic causes in patients without a clear genetic diagnosis. Like the previous ID Panel challenge in CAGI5, seven clinical features (ID, ASD, ataxia, epilepsy, microcephaly, macrocephaly, hypotonia), and variants (Pathogenic/Likely Pathogenic, Variants of Uncertain Significance and Risk Factors) were provided. The phenotypic traits and variant data of 150 patients from the CAGI5 ID Panel Challenge were provided as training set for predictors. The CAGI6 challenge confirms CAGI5 results that predicting phenotypes from gene panel data is highly challenging, with AUC values close to random, and no method able to predict relevant variants with both high accuracy and precision. However, a significant improvement is noted for the best method, with recall increasing from 66% to 82%. Several groups also successfully predicted difficult-to-detect variants, emphasizing the importance of variants initially excluded by the Padua NDD Lab.},
note = {Cited by: 1; Open Access},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Maria Cristina Aspromonte; Alessio Del Conte; Roberta Polli; Demetrio Baldo; Francesco Benedicenti; Elisa Bettella; Stefania Bigoni; Stefania Boni; Claudia Ciaccio; Stefano D’Arrigo; Ilaria Donati; Elisa Granocchio; Isabella Mammi; Donatella Milani; Susanna Negrin; Margherita Nosadini; Fiorenza Soli; Franco Stanzial; Licia Turolla; Damiano Piovesan; Silvio C. E. Tosatto; Alessandra Murgia; Emanuela Leonardi
Genetic variants and phenotypic data curated for the CAGI6 intellectual disability panel challenge Journal Article
In: Human Genetics, 2025, (Cited by: 0; Open Access).
@article{SCOPUS_ID:86000084600,
title = {Genetic variants and phenotypic data curated for the CAGI6 intellectual disability panel challenge},
author = {Maria Cristina Aspromonte and Alessio Del Conte and Roberta Polli and Demetrio Baldo and Francesco Benedicenti and Elisa Bettella and Stefania Bigoni and Stefania Boni and Claudia Ciaccio and Stefano D’Arrigo and Ilaria Donati and Elisa Granocchio and Isabella Mammi and Donatella Milani and Susanna Negrin and Margherita Nosadini and Fiorenza Soli and Franco Stanzial and Licia Turolla and Damiano Piovesan and Silvio C. E. Tosatto and Alessandra Murgia and Emanuela Leonardi},
url = {https://www.scopus.com/record/display.uri?eid=2-s2.0-86000084600&origin=inward},
doi = {10.1007/s00439-025-02733-1},
year = {2025},
date = {2025-01-01},
journal = {Human Genetics},
publisher = {Springer Science and Business Media Deutschland GmbH},
abstract = {© The Author(s) 2025.Neurodevelopmental disorders (NDDs) are common conditions including clinically diverse and genetically heterogeneous diseases, such as intellectual disability, autism spectrum disorders, and epilepsy. The intricate genetic underpinnings of NDDs pose a formidable challenge, given their multifaceted genetic architecture and heterogeneous clinical presentations. This work delves into the intricate interplay between genetic variants and phenotypic manifestations in neurodevelopmental disorders, presenting a dataset curated for the Critical Assessment of Genome Interpretation (CAGI6) ID Panel Challenge. The CAGI6 competition serves as a platform for evaluating the efficacy of computational methods in predicting phenotypic outcomes from genetic data. In this study, a targeted gene panel sequencing has been used to investigate the genetic causes of NDDs in a cohort of 415 paediatric patients. We identified 60 pathogenic and 49 likely pathogenic variants in 102 individuals that accounted for 25% of NDD cases in the cohort. The most mutated genes were ANKRD11, MECP2, ARID1B, ASH1L, CHD8, KDM5C, MED12 and PTCHD1 The majority of pathogenic variants were de novo, with some inherited from mildly affected parents. Loss-of-function variants were the most common type of pathogenic variant. In silico analysis tools were used to assess the potential impact of variants on splicing and structural/functional effects of missense variants. The study highlights the challenges in variant interpretation especially in cases with atypical phenotypic manifestations. Overall, this study provides valuable insights into the genetic causes of NDDs and emphasises the importance of understanding the underlying genetic factors for accurate diagnosis, and intervention development in neurodevelopmental conditions.},
note = {Cited by: 0; Open Access},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2024
Journal Articles
Maria Cristina Aspromonte; Maria Victoria Nugnes; Federica Quaglia; Adel Bouharoua; Silvio C. E. Tosatto; Damiano Piovesan; Vasileios Sagris; Vasilis J. Promponas; Anastasia Chasapi; Erzsébet Fichó; Galo E. Balatti; Gustavo Parisi; Martín González Buitrón; Gabor Erdos; Matyas Pajkos; Zsuzsanna Dosztányi; Laszlo Dobson; Alessio Del Conte; Damiano Clementel; Edoardo Salladini; Emanuela Leonardi; Fatemeh Kordevani; Hamidreza Ghafouri; Luiggi G. Tenorio Ku; Alexander Miguel Monzon; Carlo Ferrari; Zsófia Kálmán; Juliet F. Nilsson; Jaime Santos; Carlos Pintado-Grima; Salvador Ventura; Veronika Ács; Rita Pancsa; Mariane Goncalves Kulik; Miguel A. Andrade-Navarro; Pedro José Barbosa Pereira; Sonia Longhi; Philippe Le Mercier; Julian Bergier; Peter Tompa; Tamas Lazar
DisProt in 2024: improving function annotation of intrinsically disordered proteins Journal Article
In: Nucleic Acids Research, vol. 52, no. D1, pp. D434-D441, 2024, (Cited by: 38; Open Access).
@article{SCOPUS_ID:85176208048,
title = {DisProt in 2024: improving function annotation of intrinsically disordered proteins},
author = {Maria Cristina Aspromonte and Maria Victoria Nugnes and Federica Quaglia and Adel Bouharoua and Silvio C. E. Tosatto and Damiano Piovesan and Vasileios Sagris and Vasilis J. Promponas and Anastasia Chasapi and Erzsébet Fichó and Galo E. Balatti and Gustavo Parisi and Martín González Buitrón and Gabor Erdos and Matyas Pajkos and Zsuzsanna Dosztányi and Laszlo Dobson and Alessio Del Conte and Damiano Clementel and Edoardo Salladini and Emanuela Leonardi and Fatemeh Kordevani and Hamidreza Ghafouri and Luiggi G. Tenorio Ku and Alexander Miguel Monzon and Carlo Ferrari and Zsófia Kálmán and Juliet F. Nilsson and Jaime Santos and Carlos Pintado-Grima and Salvador Ventura and Veronika Ács and Rita Pancsa and Mariane Goncalves Kulik and Miguel A. Andrade-Navarro and Pedro José Barbosa Pereira and Sonia Longhi and Philippe Le Mercier and Julian Bergier and Peter Tompa and Tamas Lazar},
url = {https://www.scopus.com/record/display.uri?eid=2-s2.0-85176208048&origin=inward},
doi = {10.1093/nar/gkad928},
year = {2024},
date = {2024-01-01},
journal = {Nucleic Acids Research},
volume = {52},
number = {D1},
pages = {D434-D441},
publisher = {Oxford University Press},
abstract = {© The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.DisProt (URL: https://disprot.org) is the gold standard database for intrinsically disordered proteins and regions, providing valuable information about their functions. The latest version of DisProt brings significant advancements, including a broader representation of functions and an enhanced curation process. These improvements aim to increase both the quality of annotations and their coverage at the sequence level. Higher coverage has been achieved by adopting additional evidence codes. Quality of annotations has been improved by systematically applying Minimum Information About Disorder Experiments (MIADE) principles and reporting all the details of the experimental setup that could potentially influence the structural state of a protein. The DisProt database now includes new thematic datasets and has expanded the adoption of Gene Ontology terms, resulting in an extensive functional repertoire which is automatically propagated to UniProtKB. Finally, we show that DisProt’s curated annotations strongly correlate with disorder predictions inferred from AlphaFold2 pLDDT (predicted Local Distance Difference Test) confidence scores. This comparison highlights the utility of DisProt in explaining apparent uncertainty of certain well-defined predicted structures, which often correspond to folding-upon-binding fragments. Overall, DisProt serves as a comprehensive resource, combining experimental evidence of disorder information to enhance our understanding of intrinsically disordered proteins and their functional implications.},
note = {Cited by: 38; Open Access},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Federica Quaglia; Anastasia Chasapi; Maria Victoria Nugnes; Maria Cristina Aspromonte; Emanuela Leonardi; Damiano Piovesan; Silvio C. E. Tosatto
Best practices for the manual curation of intrinsically disordered proteins in DisProt Journal Article
In: Database, vol. 2024, 2024, (Cited by: 1; Open Access).
@article{SCOPUS_ID:85188297172,
title = {Best practices for the manual curation of intrinsically disordered proteins in DisProt},
author = {Federica Quaglia and Anastasia Chasapi and Maria Victoria Nugnes and Maria Cristina Aspromonte and Emanuela Leonardi and Damiano Piovesan and Silvio C. E. Tosatto},
url = {https://www.scopus.com/record/display.uri?eid=2-s2.0-85188297172&origin=inward},
doi = {10.1093/database/baae009},
year = {2024},
date = {2024-01-01},
journal = {Database},
volume = {2024},
publisher = {Oxford University Press},
abstract = {© The Author(s) 2024. Published by Oxford University Press.The DisProt database is a resource containing manually curated data on experimentally validated intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) from the literature. Developed in 2005, its primary goal was to collect structural and functional information into proteins that lack a fixed three-dimensional structure.Today, DisProt has evolved into a major repository that not only collects experimental data but also contributes to our understanding of the IDPs/IDRs roles in various biological processes, such as autophagy or the life cycle mechanisms in viruses or their involvement in diseases (such as cancer and neurodevelopmental disorders). DisProt offers detailed information on the structural states of IDPs/IDRs, including state transitions, interactions and their functions, all provided as curated annotations. One of the central activities of DisProt is the meticulous curation of experimental data from the literature. For this reason, to ensure that every expert and volunteer curator possesses the requisite knowledge for data evaluation, collection and integration, training courses and curation materials are available. However, biocuration guidelines concur on the importance of developing robust guidelines that not only provide critical information about data consistency but also ensure data acquisition.This guideline aims to provide both biocurators and external users with best practices for manually curating IDPs and IDRs in DisProt. It describes every step of the literature curation process and provides use cases of IDP curation within DisProt.},
note = {Cited by: 1; Open Access},
keywords = {},
pubstate = {published},
tppubtype = {article}
}