Group Leader
ACADEMIC PROFILES
SOCIAL
REPOSITORIES
CONTACTS
+39 049 827 6260
+39 049 827 6269
BIOGRAPHY
Silvio C. E. Tosatto is currently Full Professor of Bioinformatics and Head of the BioComputing UP lab at the Department of Biomedical Sciences of the University of Padua (Italy). Within ELIXIR, the European infrastructure for blife science data, he is deputy Head of Node of ELIXIR Italy, ExCo of the Data Platform, co-lead of the Cellular & Molecular Research priority area as well as co-lead of the Machine Learning focus group.
ACADEMIC POSITION
Full professor
since (10/2016)
ACADEMIC CAREER & DEGREES
- 2002 – PhD (Dr. rer. nat., Grade: Magna cum laude) in bioinformatics (computer science)
Universität Mannheim – Germany - 1998 – Graduate in Computer Science & Business Administration (Diplom Wirtschaftsinformatiker)
Universität Mannheim – Germany
LANGUAGES
English
Spanish
German
Italian
(Fluent)
(Fluent)
(Native)
(Native)
2025
Journal Articles
Matthias Blum; Antonina Andreeva; Laise Cavalcanti Florentino; Sara Rocio Chuguransky; Tiago Grego; Emma Hobbs; Beatriz Lazaro Pinto; Ailsa Orr; Typhaine Paysan-Lafosse; Irina Ponamareva; Gustavo A Salazar; Nicola Bordin; Peer Bork; Alan Bridge; Lucy Colwell; Julian Gough; Daniel H Haft; Ivica Letunic; Felipe Llinares-López; Aron Marchler-Bauer; Laetitia Meng-Papaxanthos; Huaiyu Mi; Darren A Natale; Christine A Orengo; Arun P Pandurangan; Damiano Piovesan; Catherine Rivoire; Christian J. A Sigrist; Narmada Thanki; Françoise Thibaud-Nissen; Paul D Thomas; Silvio C. E Tosatto; Cathy H Wu; Alex Bateman
InterPro: The protein sequence classification resource in 2025 Journal Article
In: Nucleic Acids Research, vol. 53, no. D1, pp. D444-D456, 2025, (Cited by: 1; Open Access).
@article{SCOPUS_ID:85214359849,
title = {InterPro: The protein sequence classification resource in 2025},
author = {Matthias Blum and Antonina Andreeva and Laise Cavalcanti Florentino and Sara Rocio Chuguransky and Tiago Grego and Emma Hobbs and Beatriz Lazaro Pinto and Ailsa Orr and Typhaine Paysan-Lafosse and Irina Ponamareva and Gustavo A Salazar and Nicola Bordin and Peer Bork and Alan Bridge and Lucy Colwell and Julian Gough and Daniel H Haft and Ivica Letunic and Felipe Llinares-López and Aron Marchler-Bauer and Laetitia Meng-Papaxanthos and Huaiyu Mi and Darren A Natale and Christine A Orengo and Arun P Pandurangan and Damiano Piovesan and Catherine Rivoire and Christian J. A Sigrist and Narmada Thanki and Françoise Thibaud-Nissen and Paul D Thomas and Silvio C. E Tosatto and Cathy H Wu and Alex Bateman},
url = {https://www.scopus.com/record/display.uri?eid=2-s2.0-85214359849&origin=inward},
doi = {10.1093/nar/gkae1082},
year = {2025},
date = {2025-01-01},
journal = {Nucleic Acids Research},
volume = {53},
number = {D1},
pages = {D444-D456},
publisher = {Oxford University Press},
abstract = {© 2025 The Author(s) 2024.InterPro (https://www.ebi.ac.uk/interpro) is a freely accessible resource for the classification of protein sequences into families. It integrates predictive models, known as signatures, from multiple member databases to classify sequences into families and predict the presence of domains and significant sites. The InterPro database provides annotations for over 200 million sequences, ensuring extensive coverage of UniProtKB, the standard repository of protein sequences, and includes mappings to several other major resources, such as Gene Ontology (GO), Protein Data Bank in Europe (PDBe) and the AlphaFold Protein Structure Database. In this publication, we report on the status of InterPro (version 101.0), detailing new developments in the database, associated web interface and software. Notable updates include the increased integration of structures predicted by AlphaFold and the enhanced description of protein families using artificial intelligence. Over the past two years, more than 5000 new InterPro entries have been created. The InterPro website now offers access to 85 000 protein families and domains from its member databases and serves as a long-Term archive for retired databases. InterPro data, software and tools are freely available.},
note = {Cited by: 1; Open Access},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Typhaine Paysan-Lafosse; Antonina Andreeva; Matthias Blum; Sara Rocio Chuguransky; Tiago Grego; Beatriz Lazaro Pinto; Gustavo A Salazar; Maxwell L Bileschi; Felipe Llinares-López; Laetitia Meng-Papaxanthos; Lucy J Colwell; Nick V Grishin; R. Dustin Schaeffer; Damiano Clementel; Silvio C. E Tosatto; Erik Sonnhammer; Valerie Wood; Alex Bateman
The Pfam protein families database: Embracing AI/ML Journal Article
In: Nucleic Acids Research, vol. 53, no. D1, pp. D523-D534, 2025, (Cited by: 1; Open Access).
@article{SCOPUS_ID:85214397377,
title = {The Pfam protein families database: Embracing AI/ML},
author = {Typhaine Paysan-Lafosse and Antonina Andreeva and Matthias Blum and Sara Rocio Chuguransky and Tiago Grego and Beatriz Lazaro Pinto and Gustavo A Salazar and Maxwell L Bileschi and Felipe Llinares-López and Laetitia Meng-Papaxanthos and Lucy J Colwell and Nick V Grishin and R. Dustin Schaeffer and Damiano Clementel and Silvio C. E Tosatto and Erik Sonnhammer and Valerie Wood and Alex Bateman},
url = {https://www.scopus.com/record/display.uri?eid=2-s2.0-85214397377&origin=inward},
doi = {10.1093/nar/gkae997},
year = {2025},
date = {2025-01-01},
journal = {Nucleic Acids Research},
volume = {53},
number = {D1},
pages = {D523-D534},
publisher = {Oxford University Press},
abstract = {© 2025 The Author(s) 2024.The Pfam protein families database is a comprehensive collection of protein domains and families used for genome annotation and protein structure and function analysis (https://www.ebi.ac.uk/interpro/). This update describes major developments in Pfam since 2020, including decommissioning the Pfam website and integration with InterPro, harmonization with the ECOD structural classification, and expanded curation of metagenomic, microprotein and repeat-containing families. We highlight how AlphaFold structure predictions are being leveraged to refine domain boundaries and identify new domains. New families discovered through large-scale sequence similarity analysis of AlphaFold models are described. We also detail the development of Pfam-N, which uses deep learning to expand family coverage, achieving an 8.8% increase in UniProtKB coverage compared to standard Pfam. We discuss plans for more frequent Pfam releases integrated with InterPro and the potential for artificial intelligence to further assist curation. Despite recent advances, many protein families remain to be classified, and Pfam continues working toward comprehensive coverage of the protein universe.},
note = {Cited by: 1; Open Access},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Damiano Clementel; Paula Nazarena Arrías; Soroush Mozaffari; Zarifa Osmanli; Ximena Aixa Castro; RepeatsDB Curators; Carlo Ferrari; Andrey V. Kajava; Silvio C. E. Tosatto; Alexander Miguel Monzon
RepeatsDB in 2025: expanding annotations of structured tandem repeats proteins on AlphaFoldDB Journal Article
In: Nucleic Acids Research, vol. 53, no. D1, pp. D575-D581, 2025, (Cited by: 2; Open Access).
@article{SCOPUS_ID:85211995276,
title = {RepeatsDB in 2025: expanding annotations of structured tandem repeats proteins on AlphaFoldDB},
author = {Damiano Clementel and Paula Nazarena Arrías and Soroush Mozaffari and Zarifa Osmanli and Ximena Aixa Castro and RepeatsDB Curators and Carlo Ferrari and Andrey V. Kajava and Silvio C. E. Tosatto and Alexander Miguel Monzon},
url = {https://www.scopus.com/record/display.uri?eid=2-s2.0-85211995276&origin=inward},
doi = {10.1093/nar/gkae965},
year = {2025},
date = {2025-01-01},
journal = {Nucleic Acids Research},
volume = {53},
number = {D1},
pages = {D575-D581},
publisher = {Oxford University Press},
abstract = {© The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.RepeatsDB (URL: https://repeatsdb.org) stands as a key resource for the classification and annotation of Structured Tandem Repeat Proteins (STRPs), incorporating data from both the Protein Data Bank (PDB) and AlphaFoldDB. This latest release features substantial advancements, including annotations for over 34 000 unique protein sequences from >2000 organisms, representing a fifteenfold increase in coverage. Leveraging state-of-the-art structural alignment tools, RepeatsDB now offers faster and more precise detection of STRPs across both experimental and predicted structures. Key improvements also include a redesigned user interface and enhanced web server, providing an intuitive browsing experience with improved data searchability and accessibility. A new statistics page allows users to explore database metrics based on repeat classifications, while API enhancements support scalability to manage the growing volume of data. These advancements not only refine the understanding of STRPs but also streamline annotation processes, further strengthening RepeatsDB’s role in advancing our understanding of STRP functions.},
note = {Cited by: 2; Open Access},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Damiano Piovesan; Alessio Del Conte; Mahta Mehdiabadi; Maria Cristina Aspromonte; Matthias Blum; Giulio Tesei; Sören Bülow; Kresten Lindorff-Larsen; Silvio C. E. Tosatto
MOBIDB in 2025: integrating ensemble properties and function annotations for intrinsically disordered proteins Journal Article
In: Nucleic Acids Research, vol. 53, no. D1, pp. D495-D503, 2025, (Cited by: 1; Open Access).
@article{SCOPUS_ID:85213063415,
title = {MOBIDB in 2025: integrating ensemble properties and function annotations for intrinsically disordered proteins},
author = {Damiano Piovesan and Alessio Del Conte and Mahta Mehdiabadi and Maria Cristina Aspromonte and Matthias Blum and Giulio Tesei and Sören Bülow and Kresten Lindorff-Larsen and Silvio C. E. Tosatto},
url = {https://www.scopus.com/record/display.uri?eid=2-s2.0-85213063415&origin=inward},
doi = {10.1093/nar/gkae969},
year = {2025},
date = {2025-01-01},
journal = {Nucleic Acids Research},
volume = {53},
number = {D1},
pages = {D495-D503},
publisher = {Oxford University Press},
abstract = {© The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.The MobiDB database (URL: https://mobidb.org/) aims to provide structural and functional information about intrinsic protein disorder, aggregating annotations from the literature, experimental data, and predictions for all known protein sequences. Here, we describe the improvements made to our resource to capture more information, simplify access to the aggregated data, and increase documentation of all MobiDB features. Compared to the previous release, all underlying pipeline modules were updated. The prediction module is ten times faster and can detect if a predicted disordered region is structurally extended or compact. The PDB component is now able to process large cryo-EM structures extending the number of processed entries. The entry page has been restyled to highlight functional aspects of disorder and all graphical modules have been completely reimplemented for better flexibility and faster rendering. The server has been improved to optimise bulk downloads. Annotation provenance has been standardised by adopting ECO terms. Finally, we propagated disorder function (IDPO and GO terms) from the DisProt database exploiting sequence similarity and protein embeddings. These improvements, along with the addition of comprehensive training material, offer a more intuitive interface and novel functional knowledge about intrinsic disorder.},
note = {Cited by: 1; Open Access},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2024
Journal Articles
Omar Abdelghani Attafi; Damiano Clementel; Konstantinos Kyritsis; Emidio Capriotti; Gavin Farrell; Styliani-Christina Fragkouli; Leyla Jael Castro; András Hatos; Tom Lenaerts; Stanislav Mazurenko; Soroush Mozaffari; Franco Pradelli; Patrick Ruch; Castrense Savojardo; Paola Turina; Federico Zambelli; Damiano Piovesan; Alexander Miguel Monzon; Fotis Psomopoulos; Silvio C. E. Tosatto
DOME Registry: implementing community-wide recommendations for reporting supervised machine learning in biology Journal Article
In: GigaScience, vol. 13, 2024, (Cited by: 0; Open Access).
@article{SCOPUS_ID:85212459848,
title = {DOME Registry: implementing community-wide recommendations for reporting supervised machine learning in biology},
author = {Omar Abdelghani Attafi and Damiano Clementel and Konstantinos Kyritsis and Emidio Capriotti and Gavin Farrell and Styliani-Christina Fragkouli and Leyla Jael Castro and András Hatos and Tom Lenaerts and Stanislav Mazurenko and Soroush Mozaffari and Franco Pradelli and Patrick Ruch and Castrense Savojardo and Paola Turina and Federico Zambelli and Damiano Piovesan and Alexander Miguel Monzon and Fotis Psomopoulos and Silvio C. E. Tosatto},
url = {https://www.scopus.com/record/display.uri?eid=2-s2.0-85212459848&origin=inward},
doi = {10.1093/gigascience/giae094},
year = {2024},
date = {2024-01-01},
journal = {GigaScience},
volume = {13},
publisher = {Oxford University Press},
abstract = {© The Author(s) 2024. Published by Oxford University Press GigaScience.Supervised machine learning (ML) is used extensively in biology and deserves closer scrutiny. The Data Optimization Model Evaluation (DOME) recommendations aim to enhance the validation and reproducibility of ML research by establishing standards for key aspects such as data handling and processing, optimization, evaluation, and model interpretability. The recommendations help to ensure that key details are reported transparently by providing a structured set of questions. Here, we introduce the DOME registry (URL: registry.dome-ml.org), a database that allows scientists to manage and access comprehensive DOME-related information on published ML studies. The registry uses external resources like ORCID, APICURON, and the Data Stewardship Wizard to streamline the annotation process and ensure comprehensive documentation. By assigning unique identifiers and DOME scores to publications, the registry fosters a standardized evaluation of ML methods. Future plans include continuing to grow the registry through community curation, improving the DOME score definition and encouraging publishers to adopt DOME standards, and promoting transparency and reproducibility of ML in the life sciences.},
note = {Cited by: 0; Open Access},
keywords = {},
pubstate = {published},
tppubtype = {article}
}