Group Leader
ACADEMIC PROFILES
SOCIAL
REPOSITORIES
CONTACTS
+39 049 827 6260
+39 049 827 6269
BIOGRAPHY
Silvio C. E. Tosatto is currently Full Professor of Bioinformatics and Head of the BioComputing UP lab at the Department of Biomedical Sciences of the University of Padua (Italy). Within ELIXIR, the European infrastructure for blife science data, he is deputy Head of Node of ELIXIR Italy, ExCo of the Data Platform, co-lead of the Cellular & Molecular Research priority area as well as co-lead of the Machine Learning focus group.
ACADEMIC POSITION
Full professor
since (10/2016)
ACADEMIC CAREER & DEGREES
- 2002 – PhD (Dr. rer. nat., Grade: Magna cum laude) in bioinformatics (computer science)
Universität Mannheim – Germany - 1998 – Graduate in Computer Science & Business Administration (Diplom Wirtschaftsinformatiker)
Universität Mannheim – Germany
LANGUAGES
English
Spanish
German
Italian
(Fluent)
(Fluent)
(Native)
(Native)
2025
Journal Articles
Damiano Clementel; Paula Nazarena Arrías; Soroush Mozaffari; Zarifa Osmanli; Ximena Aixa Castro; RepeatsDB Curators; Carlo Ferrari; Andrey V. Kajava; Silvio C. E. Tosatto; Alexander Miguel Monzon
RepeatsDB in 2025: expanding annotations of structured tandem repeats proteins on AlphaFoldDB Journal Article
In: Nucleic Acids Research, vol. 53, no. D1, pp. D575-D581, 2025, (Cited by: 2; Open Access).
@article{SCOPUS_ID:85211995276,
title = {RepeatsDB in 2025: expanding annotations of structured tandem repeats proteins on AlphaFoldDB},
author = {Damiano Clementel and Paula Nazarena Arrías and Soroush Mozaffari and Zarifa Osmanli and Ximena Aixa Castro and RepeatsDB Curators and Carlo Ferrari and Andrey V. Kajava and Silvio C. E. Tosatto and Alexander Miguel Monzon},
url = {https://www.scopus.com/record/display.uri?eid=2-s2.0-85211995276&origin=inward},
doi = {10.1093/nar/gkae965},
year = {2025},
date = {2025-01-01},
journal = {Nucleic Acids Research},
volume = {53},
number = {D1},
pages = {D575-D581},
publisher = {Oxford University Press},
abstract = {© The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.RepeatsDB (URL: https://repeatsdb.org) stands as a key resource for the classification and annotation of Structured Tandem Repeat Proteins (STRPs), incorporating data from both the Protein Data Bank (PDB) and AlphaFoldDB. This latest release features substantial advancements, including annotations for over 34 000 unique protein sequences from >2000 organisms, representing a fifteenfold increase in coverage. Leveraging state-of-the-art structural alignment tools, RepeatsDB now offers faster and more precise detection of STRPs across both experimental and predicted structures. Key improvements also include a redesigned user interface and enhanced web server, providing an intuitive browsing experience with improved data searchability and accessibility. A new statistics page allows users to explore database metrics based on repeat classifications, while API enhancements support scalability to manage the growing volume of data. These advancements not only refine the understanding of STRPs but also streamline annotation processes, further strengthening RepeatsDB’s role in advancing our understanding of STRP functions.},
note = {Cited by: 2; Open Access},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Damiano Piovesan; Alessio Del Conte; Mahta Mehdiabadi; Maria Cristina Aspromonte; Matthias Blum; Giulio Tesei; Sören Bülow; Kresten Lindorff-Larsen; Silvio C. E. Tosatto
MOBIDB in 2025: integrating ensemble properties and function annotations for intrinsically disordered proteins Journal Article
In: Nucleic Acids Research, vol. 53, no. D1, pp. D495-D503, 2025, (Cited by: 1; Open Access).
@article{SCOPUS_ID:85213063415,
title = {MOBIDB in 2025: integrating ensemble properties and function annotations for intrinsically disordered proteins},
author = {Damiano Piovesan and Alessio Del Conte and Mahta Mehdiabadi and Maria Cristina Aspromonte and Matthias Blum and Giulio Tesei and Sören Bülow and Kresten Lindorff-Larsen and Silvio C. E. Tosatto},
url = {https://www.scopus.com/record/display.uri?eid=2-s2.0-85213063415&origin=inward},
doi = {10.1093/nar/gkae969},
year = {2025},
date = {2025-01-01},
journal = {Nucleic Acids Research},
volume = {53},
number = {D1},
pages = {D495-D503},
publisher = {Oxford University Press},
abstract = {© The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.The MobiDB database (URL: https://mobidb.org/) aims to provide structural and functional information about intrinsic protein disorder, aggregating annotations from the literature, experimental data, and predictions for all known protein sequences. Here, we describe the improvements made to our resource to capture more information, simplify access to the aggregated data, and increase documentation of all MobiDB features. Compared to the previous release, all underlying pipeline modules were updated. The prediction module is ten times faster and can detect if a predicted disordered region is structurally extended or compact. The PDB component is now able to process large cryo-EM structures extending the number of processed entries. The entry page has been restyled to highlight functional aspects of disorder and all graphical modules have been completely reimplemented for better flexibility and faster rendering. The server has been improved to optimise bulk downloads. Annotation provenance has been standardised by adopting ECO terms. Finally, we propagated disorder function (IDPO and GO terms) from the DisProt database exploiting sequence similarity and protein embeddings. These improvements, along with the addition of comprehensive training material, offer a more intuitive interface and novel functional knowledge about intrinsic disorder.},
note = {Cited by: 1; Open Access},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2024
Journal Articles
Omar Abdelghani Attafi; Damiano Clementel; Konstantinos Kyritsis; Emidio Capriotti; Gavin Farrell; Styliani-Christina Fragkouli; Leyla Jael Castro; András Hatos; Tom Lenaerts; Stanislav Mazurenko; Soroush Mozaffari; Franco Pradelli; Patrick Ruch; Castrense Savojardo; Paola Turina; Federico Zambelli; Damiano Piovesan; Alexander Miguel Monzon; Fotis Psomopoulos; Silvio C. E. Tosatto
DOME Registry: implementing community-wide recommendations for reporting supervised machine learning in biology Journal Article
In: GigaScience, vol. 13, 2024, (Cited by: 0; Open Access).
@article{SCOPUS_ID:85212459848,
title = {DOME Registry: implementing community-wide recommendations for reporting supervised machine learning in biology},
author = {Omar Abdelghani Attafi and Damiano Clementel and Konstantinos Kyritsis and Emidio Capriotti and Gavin Farrell and Styliani-Christina Fragkouli and Leyla Jael Castro and András Hatos and Tom Lenaerts and Stanislav Mazurenko and Soroush Mozaffari and Franco Pradelli and Patrick Ruch and Castrense Savojardo and Paola Turina and Federico Zambelli and Damiano Piovesan and Alexander Miguel Monzon and Fotis Psomopoulos and Silvio C. E. Tosatto},
url = {https://www.scopus.com/record/display.uri?eid=2-s2.0-85212459848&origin=inward},
doi = {10.1093/gigascience/giae094},
year = {2024},
date = {2024-01-01},
journal = {GigaScience},
volume = {13},
publisher = {Oxford University Press},
abstract = {© The Author(s) 2024. Published by Oxford University Press GigaScience.Supervised machine learning (ML) is used extensively in biology and deserves closer scrutiny. The Data Optimization Model Evaluation (DOME) recommendations aim to enhance the validation and reproducibility of ML research by establishing standards for key aspects such as data handling and processing, optimization, evaluation, and model interpretability. The recommendations help to ensure that key details are reported transparently by providing a structured set of questions. Here, we introduce the DOME registry (URL: registry.dome-ml.org), a database that allows scientists to manage and access comprehensive DOME-related information on published ML studies. The registry uses external resources like ORCID, APICURON, and the Data Stewardship Wizard to streamline the annotation process and ensure comprehensive documentation. By assigning unique identifiers and DOME scores to publications, the registry fosters a standardized evaluation of ML methods. Future plans include continuing to grow the registry through community curation, improving the DOME score definition and encouraging publishers to adopt DOME standards, and promoting transparency and reproducibility of ML in the life sciences.},
note = {Cited by: 0; Open Access},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Hamidreza Ghafouri; Tamas Lazar; Alessio Del Conte; Luiggi G. Tenorio Ku; Peter Tompa; Silvio C. E. Tosatto; Alexander Miguel Monzon; Maria C. Aspromonte; Pau Bernadó; Belén Chaves-Arquero; Lucia Beatriz Chemes; Damiano Clementel; Tiago N. Cordeiro; Carlos A. Elena-Real; Michael Feig; Isabella C. Felli; Carlo Ferrari; Julie D. Forman-Kay; Tiago Gomes; Frank Gondelaud; Claudiu C. Gradinaru; Tâp Ha-Duong; Teresa Head-Gordon; Pétur O. Heidarsson; Giacomo Janson; Gunnar Jeschke; Emanuela Leonardi; Zi Hao Liu; Sonia Longhi; Xamuel L. Lund; Maria J. Macias; Pau Martin-Malpartida; Davide Mercadante; Assia Mouhand; Gabor Nagy; María Victoria Nugnes; José Manuel Pérez-Cañadillas; Giulia Pesce; Roberta Pierattelli; Damiano Piovesan; Federica Quaglia; Sylvie Ricard-Blum; Paul Robustelli; Amin Sagar; Edoardo Salladini; Lucile Sénicourt; Nathalie Sibille; João M. C. Teixeira; Thomas E. Tsangaris; Mihaly Varadi
PED in 2024: improving the community deposition of structural ensembles for intrinsically disordered proteins Journal Article
In: Nucleic Acids Research, vol. 52, no. D1, pp. D536-D544, 2024, (Cited by: 14; Open Access).
@article{SCOPUS_ID:85181761325,
title = {PED in 2024: improving the community deposition of structural ensembles for intrinsically disordered proteins},
author = {Hamidreza Ghafouri and Tamas Lazar and Alessio Del Conte and Luiggi G. Tenorio Ku and Peter Tompa and Silvio C. E. Tosatto and Alexander Miguel Monzon and Maria C. Aspromonte and Pau Bernadó and Belén Chaves-Arquero and Lucia Beatriz Chemes and Damiano Clementel and Tiago N. Cordeiro and Carlos A. Elena-Real and Michael Feig and Isabella C. Felli and Carlo Ferrari and Julie D. Forman-Kay and Tiago Gomes and Frank Gondelaud and Claudiu C. Gradinaru and Tâp Ha-Duong and Teresa Head-Gordon and Pétur O. Heidarsson and Giacomo Janson and Gunnar Jeschke and Emanuela Leonardi and Zi Hao Liu and Sonia Longhi and Xamuel L. Lund and Maria J. Macias and Pau Martin-Malpartida and Davide Mercadante and Assia Mouhand and Gabor Nagy and María Victoria Nugnes and José Manuel Pérez-Cañadillas and Giulia Pesce and Roberta Pierattelli and Damiano Piovesan and Federica Quaglia and Sylvie Ricard-Blum and Paul Robustelli and Amin Sagar and Edoardo Salladini and Lucile Sénicourt and Nathalie Sibille and João M. C. Teixeira and Thomas E. Tsangaris and Mihaly Varadi},
url = {https://www.scopus.com/record/display.uri?eid=2-s2.0-85181761325&origin=inward},
doi = {10.1093/nar/gkad947},
year = {2024},
date = {2024-01-01},
journal = {Nucleic Acids Research},
volume = {52},
number = {D1},
pages = {D536-D544},
publisher = {Oxford University Press},
abstract = {© The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.The Protein Ensemble Database (PED) (URL: https://proteinensemble.org) is the primary resource for depositing structural ensembles of intrinsically disordered proteins. This updated version of PED reflects advancements in the field, denoting a continual expansion with a total of 461 entries and 538 ensembles, including those generated without explicit experimental data through novel machine learning (ML) techniques. With this significant increment in the number of ensembles, a few yet-unprecedented new entries entered the database, including those also determined or refined by electron paramagnetic resonance or circular dichroism data. In addition, PED was enriched with several new features, including a novel deposition service, improved user interface, new database cross-referencing options and integration with the 3D-Beacons network—all representing efforts to improve the FAIRness of the database. Foreseeably, PED will keep growing in size and expanding with new types of ensembles generated by accurate and fast ML-based generative models and coarse-grained simulations. Therefore, among future efforts, priority will be given to further develop the database to be compatible with ensembles modeled at a coarse-grained level.},
note = {Cited by: 14; Open Access},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Federica Quaglia; Anastasia Chasapi; Maria Victoria Nugnes; Maria Cristina Aspromonte; Emanuela Leonardi; Damiano Piovesan; Silvio C. E. Tosatto
Best practices for the manual curation of intrinsically disordered proteins in DisProt Journal Article
In: Database, vol. 2024, 2024, (Cited by: 1; Open Access).
@article{SCOPUS_ID:85188297172,
title = {Best practices for the manual curation of intrinsically disordered proteins in DisProt},
author = {Federica Quaglia and Anastasia Chasapi and Maria Victoria Nugnes and Maria Cristina Aspromonte and Emanuela Leonardi and Damiano Piovesan and Silvio C. E. Tosatto},
url = {https://www.scopus.com/record/display.uri?eid=2-s2.0-85188297172&origin=inward},
doi = {10.1093/database/baae009},
year = {2024},
date = {2024-01-01},
journal = {Database},
volume = {2024},
publisher = {Oxford University Press},
abstract = {© The Author(s) 2024. Published by Oxford University Press.The DisProt database is a resource containing manually curated data on experimentally validated intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) from the literature. Developed in 2005, its primary goal was to collect structural and functional information into proteins that lack a fixed three-dimensional structure.Today, DisProt has evolved into a major repository that not only collects experimental data but also contributes to our understanding of the IDPs/IDRs roles in various biological processes, such as autophagy or the life cycle mechanisms in viruses or their involvement in diseases (such as cancer and neurodevelopmental disorders). DisProt offers detailed information on the structural states of IDPs/IDRs, including state transitions, interactions and their functions, all provided as curated annotations. One of the central activities of DisProt is the meticulous curation of experimental data from the literature. For this reason, to ensure that every expert and volunteer curator possesses the requisite knowledge for data evaluation, collection and integration, training courses and curation materials are available. However, biocuration guidelines concur on the importance of developing robust guidelines that not only provide critical information about data consistency but also ensure data acquisition.This guideline aims to provide both biocurators and external users with best practices for manually curating IDPs and IDRs in DisProt. It describes every step of the literature curation process and provides use cases of IDP curation within DisProt.},
note = {Cited by: 1; Open Access},
keywords = {},
pubstate = {published},
tppubtype = {article}
}